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Abstract

We describe an alternative approach to the prediction of W and Z transverse

momentum distributions based on an extended version of the DDT formula. The

resummation of large logarithms, mandatory at small qT, is performed in qT-space,

rather than in the impact parameter b. The leading, next-to-leading and next-

to-next-to-leading towers of logarithms are identical in the b-space and qT-space

approaches. We argue that these terms are su�cient for W and Z production

in the region in which perturbation theory can be trusted. Direct resummation

in qT-space provides a uni�ed description of vector boson transverse momentum

distributions valid at both large and small qT.



1 Introduction

We re-examine the transverse momentum distributions of vector bosons, in view of the

large data samples expected at the Tevatron. In p�p collisions at
p
S = 1:8 TeV we

expect about 105 W bosons and 104 Z bosons, observed through their leptonic decays,

per 100 pb�1 of accumulated data. These events will be invaluable for QCD studies, as

well as for precision measurements of the W mass. In order to exploit these data samples

fully the experimenters will require detailed information about the expected rapidity and

transverse momentum distributions of the vector bosons and of their decay products.

In QCD a vector boson acquires transverse momentum qT by recoiling against one

or more emitted partons [1, 2]. Order by order in perturbation theory we encounter

logarithms, lnQ2=q2
T
, where Q is the mass of the lepton anti-lepton pair resulting from the

vector boson decay. These logarithms must be resummed to give an accurate prediction

in the low qT region. The original approach to the summation of logarithms at small qT

was provided by Dokshitzer, Dykanov and Troyan (DDT) [3] who derived an expression

(reproduced here for the case of massive photon production),

d�

dQ2dq2
T
dy

=
�0

Q2

X
q

e2
q

d

dq2
T

(
fq=A(xA; qT)f�q=B(xB; qT) exp[TDDT(qT; Q)] + (q$ �q)

)
; (1)

where T is a leading log Sudakov form-factor,1

TDDT(qT; Q) = �
Z
Q2

q
2
T

d��2

��2
�S(��)

�

4

3

�
ln
Q2

��2
� 3

2

�
: (2)

The present state of the art in the theoretical description of vector boson production

is based on the b-space formalism where b is the impact parameter which is Fourier

conjugate to the vector boson transverse momentum. The b-space formalism, which allows

the implementation of transverse momentum conservation for the emitted gluons,2 has

1Other notation will be de�ned in the body of the paper.

2See, for example, Ref. [4].
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the remarkable consequence that the cross section at qT = 0 is calculable for very large

Q [5, 6].3

Nevertheless, in practice the b-space formalism has certain disadvantages. Since the

cross section is given as a Fourier integral in b which extends from 0 to 1, one cannot

make theoretical predictions for any qT without having a prescription for dealing with

the non-perturbative region of large b. This problem can be solved by introducing an

additional non-perturbative form factor (to be determined from experiment), but that

also leads to unphysical behaviour of the cross section at large qT, where one should

recover the ordinary perturbation theory result. These points will be further discussed

later in the text.

Clearly, if one could perform the Fourier integral in b analytically and thus obtain

an expression for the cross section in qT-space, the above problems would be solved.

A model for the non-perturbative region would have to be introduced only at the very

lowest values of qT, and one would have a uni�ed description of vector boson transverse

momentum distributions valid at both small and large qT.

In this paper we present an approach to resummation in qT-space, which is based

on an extended version of the DDT formula. The b-space formalism [6]-[14] resums the

contributions to the cross section from the following towers of logarithms (L = lnQ2=q2
T
):

L :
1

q2
T

�
j

S
L2j�1 ;

NL :
1

q2
T

�
j

S
L2j�2 ;

NNL :
1

q2
T

�
j

S
L2j�3 ;

NNNL :
1

q2
T

�j
S
L2j�4 : (3)

Our extended DDT expression agrees with the b-space results for all but the NNNL series.

3Very massive vector bosons are produced at qT = 0 in association with semi-hard gluons which have

zero net transverse momentum. Unfortunately, in W and Z production Q is too low and this asymptotic

regime does not apply.
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However, for vector bosons with masses less than MZ , we �nd that the NNNL series is

numerically unimportant for qT > 3 GeV. Furthermore, a speci�c choice of coe�cients in

the qT-space Sudakov form factor allows us to absorb the �rst term in the NNNL tower

of logarithms, and to obtain exact agreement with resummation in b-space to O(�2
S
).

Based on these results, we argue that the qT-space approach preserves almost all

the reliable features of the b-space formalism,4 and that it also has certain practical

advantages:

� We avoid numerical pathologies in the matching, caused by combining results from

b-space and qT-space. Although the matching is formally included in the b-space

method [7, 10, 12, 13], the cross section is not correctly calculated for qT � Q=2.

The cross section in this region is the result of a delicate cancellation between the

resummed and �nite pieces. The slightly di�erent treatment of the two terms is

su�cient to upset the cancellation. In contrast, the matching works well in qT-

space, leading to a uni�ed description of the qT and y distributions valid for all

qT.

� We need to introduce a model only at the very lowest values of qT.

� We have the practical advantage that we avoid both the numerical Fourier transform

and multiple evaluations of the structure functions at each value of qT.

A complete explanation of these points will be found later in the paper.

It is important to emphasize here we are not challenging the theoretical importance of

the b-space formalism, which leads to interesting results, particularly about the production

of very massive bosons. Nevertheless, it is our opinion that in practice the extended DDT

approach is su�cient for the theoretical description of the W and Z production.

The rest of the paper is organized as follows: in Section 2 we review the b-space re-

summation. In Section 3 we derive an extended version of the DDT expression, which

4The subleading terms in b-space have a profound e�ect at qT = 0. However, for W and Z production

this region is dominated by non-perturbative e�ects.
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forms the basis of our approach. Section 4 contains comparison of the perturbative Su-

dakov form factors in the qT-space and b-space formalisms, and shows that in the region

where the latter is reliable it is essentially identical with the former. We also present

a prescription for dealing with the non-perturbative region of low qT, and compare our

results with typical b-space calculations. Our conclusions are given in Section 5, while

Appendix A contains the saddle point evaluation of the b-space expression for the cross

section at qT = 0.

2 Resummation formalism in b-space

The general expression for the resummed di�erential cross section for vector boson pro-

duction in hadronic collisions may be written in the form

d�(AB ! V (! l�l0)X)

dq2
T
dQ2 dy d cos � d�

=
1

28N�S

Q2

(Q2 �M2
V
)2 +M2

V
�2
V

�
�
Yr(q

2
T
; Q2; y; �) + Yf (q

2
T
; Q2; y; �; �)

�
: (4)

In the above, N = 3 is the number of colors,
p
S is the total hadron-hadron center-

of-mass energy, while � and � refer to the lepton polar and azimuthal angles in the

Collins-Soper (CS) frame [15]. The mass and width of the vector boson are denoted by

MV and �V . The functions Yr and Yf stand for the resummed and �nite parts of the cross

section, respectively. As the details of the �nite part are not important for the subsequent

discussion, we review here only the resummed part, and refer the reader to Ref. [13] for

the complete description of O(�S) �nite part.
The resummed part of the cross section is given as the Fourier integral over the impact

parameter b,5

Yr(q
2
T
; Q2; y; �) = �(Q2 � q2

T
)
1

2�

Z
1

0
db b J0(qTb)

X
a;b

0FNP

ab
(Q; b; xA; xB)

5The prime on the sum in Eq. (5) indicates that gluons are excluded from the summation.
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� Wab(Q; b�; �)f
0

a=A
(xA;

b0

b�
)f 0

b=B
(xB;

b0

b�
) ; (5)

where the variables xA and xB are given in terms of the lepton pair mass Q and rapidity

y as

xA =
Qp
S
exp (y) ; xB =

Qp
S
exp (�y) : (6)

The modi�ed parton structure functions in Eq. (5), f 0, are related to theMS structure

functions, f , by a convolution

f 0
a=H

(xA; �) =
X
c

Z 1

xA

dz

z
Cac

�
xA

z
; �

�
fc=H (z; �) ; (7)

where (a; b 6= g) [16]

Cab(z; �) = �ab

(
�(1� z) + ��S(�)CF

h
1� z + (

�2

2
� 4)�(1� z)

i)
; (8)

Cag(z; �) = ��S(�)TR
h
2z(1� z)

i
: (9)

Here we have introduced

��S(�) =
�S(�)

2�
; (10)

while CF = 4=3 and TR = 1=2 are the usual colour factors.

The function W can be expressed in terms of the Sudakov form factor S(b;Q) and is

given by

Wab(Q; b; �) = H
(0)

ab
(�) exp [S(b;Q)] ; (11)

where H(0), which includes the angular dependence of the lowest order cross section and

coupling factors, is de�ned in Appendix A of Ref. [13]. The Sudakov form factor itself is

given as [6]

S(b;Q) = �
Z
Q
2

b2
0
=b2

d��2

��2

"
ln

 
Q2

��2

!
A(��S(��)) +B(��S(��))

#
; (12)

with b0 = 2 exp(�
E) � 1:1229. The coe�cients A and B are perturbation series in �S,

A(��S) =
1X
i=1

��i
S
A(i) ; B(��S) =

1X
i=1

��i
S
B(i) : (13)
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The �rst two coe�cients in the expansion of A and B are known [16, 17]:

A(1) = 2CF ;

A(2) = 2CF

�
N(

67

18
� �2

6
)� 10

9
TRnf

�
;

B(1) = �3CF ;

B(2) = C2
F

�
�2 � 3

4
� 12�(3)

�
+ CFN

�11
9
�2 � 193

12
+ 6�(3)

�

+ CFTRnf
�17
3
� 4

9
�2
�
: (14)

One of the main advantages of the b-space resummation formalism is that the simple

form for S(b;Q) as given in Eq. (12), remains valid to all orders in perturbation theory [6].

In addition, as mentioned above, for very large values of the vector boson mass the b-space

formulae make de�nite predictions for the qT = 0 behaviour of the cross section [5, 6].

Unfortunately, the practical implementation of the b-space formulae presents some

di�culties. The b-space integral in the Bessel transform in Eq. (5) extends from 0 to 1,

which means that one has to �nd a way to deal with the non-perturbative region where b

is large. That problem is usually circumvented by evaluating W and the parton structure

functions at

b� =
bq

1 + (b=b lim)2
; (15)

which never exceeds the cut-o� value b lim, and also by introducing an additional function

FNP , which represents the non-perturbative (large b) part of the Sudakov form factor,

to be determined from experiment [6]. This is usually done by assuming a particular

functional form for FNP which involves several parameters that can be adjusted in order

to give the best possible description of experimental data. The speci�c choice of the

functional form for FNP is a matter of debate [9, 11, 13], but we will not discuss it further

here. The point which we would like to emphasize here is that without introducing b�

and FNP one would not be able to make theoretical predictions for any value of qT, even

in the large qT region where perturbation theory is expected to work well.

7



Another problem which occurs in the b-space resummation formalism is the transition

between the low and the high qT regions. At large qT the resummed part is well represented

by the �rst few terms in its perturbative expansion. When the resummed part Yr is

combined with Yf one formally recovers the perturbation theory result. However, the

cancellation at large qT is quite delicate and is compromised by the non-perturbative

function which acts only on Yr. We illustrate the problem in Figure 1,6 which compares

the O(�S) perturbation theory result for d�=dqT inW++W� production at the Fermilab

Tevatron, to the theoretical prediction obtained from the b-space resummation (Eqs. (4)

and (5)).7

Even though by carefully matching the low and high qT regions one can reduce theo-

retical errors and produce smoother transverse momentum distributions, matching is still

bound to fail eventually, and one is forced to switch to the pure perturbative result at

some qT [10]. This procedure inevitably leads to discontinuous qT distributions, which are

clearly unphysical.

If one could �nd a qT-space expression for Yr, both of the above problems would be

solved: just as for the conventional perturbation theory, theoretical predictions could be

made without any smearing or additional functions, at least for values of qT not too close

to zero. Also, since Yr and Yf would both be calculated in qT-space, the cancellation

between the resummed part and subtractions from the �nite part would be explicit, and

matching of Yr+Yf onto the perturbative result at large qT would be manifest. With this

motivation we consider the derivation of qT-space equivalent of Eq. (5) in the following

section.

6Note that throughout the paper we use the MRSR1 structure functions, with �S(MZ) = 0:113 [18].
7Following Eqs. (22,23) of Ref. [13], instead of b0=b� we actually used the exact �rst order result for the

scale at which parton distribution functions are evaluated. This prescription preserves the total integral

and reduces to b0=b� for large b. Furthermore, it improves the large qT matching between Yr + Yf and

the perturbation theory.
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3 Resummation in q
T
-space: extended DDT formula

For the sake of simplicity we discuss only the resummed part of the non-singlet (NS) cross

section for the process AB ! 
�X. The extension to the general process AB ! V (!
l�l0)X is straightforward. In this case Eqs. (4), (5) and (11) can be rewritten in the form

d�

dq2
T
dQ2

=
�0

Q2

X
q

e2
q

Z 1

0
dxAdxB �(xAxB � Q2

S
)

� 1

2

Z
1

0
db b J0(qTb) exp [S(b;Q)] ~f 0q=A(xA;

b0

b
) ~f 0�q=B(xB;

b0

b
) ; (16)

where �0 = 4��2=(9S) and ~f 0
q=A

= f 0
q=A
� f 0�q=A;

~f 0�q=B = f 0�q=B� f 0
q=B

are the higher order NS

structure functions. Note that we have removed the non-perturbative function FNP and

variable b� from Eq. (5), so that the above expression represents the pure perturbative

result.

From Eq. (16) one can easily obtain the N -th moment of the cross section with respect

to � = xAxB = Q2=S,

�(N) =
Z
d� �N

Q2

�0

d�

dq2
T
dQ2

=
X
q

e2
q

1

2

Z
1

0
db b J0(qTb) exp [S(b;Q)] ~f 0q=A(N;

b0

b
) ~f 0�q=B(N;

b0

b
) : (17)

The N -th moment of the NS higher order structure function satis�es the GLAP equation,8

d

d ln �2
f 0
q=H

(N;�) = 
0
N
f 0
q=H

(N;�) ; (18)

with the solution

~f 0
q=H

(N;
b0

b
) = exp

"
�
Z

Q2

(b0=b)2

d��2

��2

0
N
(�S(��))

#
~f 0
q=A

(N;Q) : (19)

Using Eqs. (17,19) we may write

�(N) = G(N;Q)
1

2

Z
1

0
db b J0(qTb) exp[UN(b;Q)] ; (20)

8The anomalous dimension 
0 di�ers in a calculable way from the MS anomalous dimension.
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where G(N;Q) denotes the parton 
ux,

G(N;Q) =
X
q

e2
q
~f 0
q=A

(N;Q) ~f 0�q=B(N;Q) ; (21)

and the exponent U is given as

UN (b;Q) = �
Z
Q
2

b
2
0
=b2

d��2

��2

"
A(��S(��)) ln

Q2

��2
+B(��S(��)) + 2
0

N
(��S(��))

#

�
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2b2

b20

!
nDm : (22)

Here 1D2 = �1
2
A(1), etc. Inserting Eq. (22) in Eq. (20) we obtain

�(N) = G(N;Q)
1

2

Z
1

0
db b J0(qTb) exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2b2

b20

!
nDm

#
: (23)

This expression may be integrated by parts using the relationship

d

dx

h
xJ1(x)

i
= xJ0(x) : (24)

Because of the rapid damping of the Sudakov factor as b!1 we may ignore the boundary

terms and obtain

�(N) = � 1

2q2
T

G(N;Q)
Z
1

0
dxJ1(x)

d

dx
exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2x2

q2
T
b20

!
nDm

#
;

� G(N;Q)
Z
1

0
dxJ1(x)

d

dq2
T

exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2x2

q2
T
b20

!
nDm

#
: (25)

Eq. (25) already has the structure of the DDT formula. In fact, setting lnx=b0 = 0 in the

integrand we recover exactly the DDT formula, i.e. the exponent has exactly the form of

Eq. (22) with b0=b replaced by qT. Because of that we write �(N) in the form

�(N) =
d

dq2
T

(
G(N;Q)

Z
1

0
dxJ1(x) exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2

q2
T

!
nDm

#
+R(qT)

)

=
d

dq2
T

(
G(N;Q) exp[UN( 1

b0qT
; Q)] +R(qT)

)

� d

dq2
T

(
G(N; qT) exp[S( 1

b0qT
; Q)] +R(qT)

)
; (26)
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where the remainder R is de�ned as

R(qT) = G(N;Q)
Z
1

0
dxJ1(x)

(
exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2x2

q2
T
b20

!
nDm

#

� exp

"
1X
n=1

n+1X
m=0

��n
S
(Q) lnm

 
Q2

q2
T

!
nDm

# )
: (27)

Using9 Z
1

0
dxJ1(x)

n
1; ln

x

b0
; ln2

x

b0
; ln3

x

b0
; : : :

o
=
n
1; 0; 0;�1

2
�(3); : : :

o
; (28)

we can evaluate R(qT) as a power series in �S . We �nd that the remainder contributes to

the NNNL tower of terms, three logarithms down from the leading terms (L = lnQ2=q2
T
),

R(qT) = �G(N;Q)
(
�(3)

1X
j=2

rj(1D2)
j ��j

S
(Q)L2j�3 +O(��j

S
L2j�4)

)
; (29)

with n
r2; r3; r4; r5; r6; r7; : : :

o
=
n
8;
40

3
;
28

3
; 4;

11

9
;
13

45
; : : :

o
: (30)

Starting from the b-space expression we have demonstrated an extended DDT formula,

d�

dq2
T
dQ2

=
�0

Q2

X
q

e2
q

Z 1

0
dxAdxB �(xAxB � Q2

S
)

� d

dq2
T

(
~f 0
q=A

(xA; qT) ~f
0

�q=B(xB; qT) exp [T (qT; Q)] +O(��j
S
L2j�3)

)
; (31)

which holds if we drop NNNL terms. In the above expression the qT-space Sudakov form

factor is given by

T (qT; Q) = �
Z

Q
2

q
2
T

d��2

��2

"
~A(��S(��)) ln

Q2

��2
+ ~B(��S(��))

#
; (32)

where the qT-space coe�cients ~A and ~B are de�ned in a similar way as their b-space

counterparts, i.e.

~A(�S) =
1X
i=1

��i
S
~A(i) ; ~B(�S) =

1X
i=1

��i
S
~B(i) : (33)

9See, for example, Ref. [4].
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The �rst two coe�cients in ~A and ~B would be exactly the same as corresponding b-space

coe�cients if we drop NNNL terms. However, by making the particular choice of

~A(1) = A(1) ;

~A(2) = A(2) ;

~B(1) = B(1) ;

~B(2) = B(2) + 2(A(1))2�(3) ; (34)

we absorb the �rst term in the NNNL tower of logarithms. In this way Eq. (34) imposes

exact agreement between the b-space and qT-space formalisms at order �2
S
.

As we pointed out at the beginning of this section, the extension of the NS cross

section for AB ! 
�X to the general case of AB ! V (! l�l0)X which includes the decay

presents no di�culties, so that our qT-space equivalent of Eq. (5) is given in the extended

DDT form as

~Yr(q
2
T
; Q2; y; �) = �(Q2 � q2

T
)
1

�

� X
a;b

0H
(0)

ab
(�)

d

dq2
T

h
f 0
a=A

(xA; qT) f
0

b=B
(xB; qT) exp [T (qT; Q)]

i
; (35)

with T given in Eq. (32) in terms of coe�cients of Eqs. (33,34). The above equation is

the central result of this paper. It is still ill-de�ned in the small qT region, which re
ects

the fact that the problem is not entirely determined by perturbation theory and requires

non-perturbative input. We will discuss our model for the non-perturbative region later

in the following section.

4 Results

4.1 Form factors

Before presenting our results for W and Z production we compare the form factors cal-

culated using the b-space and qT-space formulae, for values of Q which are presently of

12



interest. In practice this means Q � MZ. The comparison of the form factors will allow

us to make an estimate of the practical numerical importance of transverse momentum

conservation, i.e. of the subleading terms which are not present in the qT-space formalism.

To simplify the comparison we will consider the e�ects of the Sudakov form factor alone.

We will therefore ignore the in
uence of modi�ed parton distribution functions on the qT

dependence. For the purpose of illustration we take Q = MZ and �S(MZ) = 0:113.

We de�ne the b-space form factor as

F (b)(qT) =
Q2

4�

Z
d2b exp(ib � qT) exp[S(b�; Q)] FNP (Q; b; xA; xB)

=
Q2

2

Z
1

0
db b J0(bqT) exp[S(b�; Q)] FNP (Q; b; xA; xB) : (36)

Note that FNP and b� have to be introduced in the above expression as a prescription

for dealing with the non-perturbative region of large b. A speci�c choice of the non-

perturbative function should make a di�erence only in the region of low qT. In order to

show that, in Figure 2 we present form factors evaluated with FNP taken from Ref. [11]

(LY), and with an e�ective gaussian as used in Ref. [13] (ERV, g = 3:0 GeV2). For LY

form factor we take xA = xB = MZ=
p
S for

p
S = 1:8 TeV. As expected, at large qT

the form factors resulting from the two choices of FNP agree. For small qT we �nd that

results for F (b)(qT) tend to a di�erent �nite intercept controlled by the non-perturbative

function.

The above b-space expression for the form factor should be compared to its qT-space

counterpart,

F (qT)(qT) = Q2 d

dq2
T

exp[T (qT; Q)] ; (37)

and also to the O(�2
S
) perturbation theory result,

F (p)(qT) =
Q2

q2
T

2X
n=1

2n�1X
m=0

��n
S
lnm

Q2

q2
T

nCm ; (38)

with nCm given in terms of the qT-space coe�cients as

1C1 = ~A(1) ;
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1C0 = ~B(1) ;

2C3 = �1

2

�
~A(1)

�2
;

2C2 = ~A(1)(�0 � 3

2
~B(1)) ;

2C1 = ~A(2) + ~B(1)(�0 � ~B(1)) ;

2C0 = ~B(2) : (39)

As one can see from Figure 3, in the region where one can trust perturbation theory

(qT � 3 GeV), our qT-space result of Eq. (37) agrees well with the b-space form factor

(obtained with ERV non-perturbative function). Further, it is clear that resummation is

needed in the region where F (b) and F (qT) di�er signi�cantly from the perturbative result.

It is also interesting to investigate the size of the NNNL e�ects. In Figure 4 we show

the qT-space form factor F (qT)(qT) calculated using coe�cients given in Eq. (34), and also

the one calculated with ~B(2) replaced by B(2). As one can see, the change is never more

than a few percent for qT > 3 GeV.

We therefore conclude that the b-space and qT-space formula are substantially identical,

despite the neglect of NNNL terms in the latter. The di�erences between them are smaller

than the di�erences introduced in the b-space formalism by the use of di�erent non-

perturbative functions. The above conclusion holds for the particular case of the vector

boson production with Q �MZ .

4.2 Extension to the non-perturbative region

As we have already pointed out, there are two main advantages of the qT-space approach

over the b-space formalism: �rst, outside of the non-perturbative region one can make

theoretical predictions based on perturbation theory alone with soft gluon resummation

e�ects included. In Figures 5 and 6 we show predictions of Eq. (35) for W+ +W� and

Z production at Fermilab Tevatron. It is clear that these predictions are quite close to

typical b-space results. Second, matching of the resummation formalism onto pure pertur-
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bation theory for large qT is explicit, and hence there is no need for somewhat unnatural

switching from one type of theoretical description to another. Since our calculation con-

tains the O(�S) �nite part and the O(�2
S
) Sudakov form factor, there still may be some

residual unmatched higher order e�ects present in d�=dqT in the large qT region, where the

cancellation of the resummed part and subtractions from the �nite part is quite delicate.

However, these e�ects are expected to be small, and should be even less important after

the inclusion of the second order calculation of Yf . The qT-space matching is illustrated

in Figure 7 for W++W� production at Tevatron, and should be compared to the b-space

result shown in Figure 1. Note that less than 2% of the total cross section lies above

qT = 50 GeV, so the overall importance of the portion of the cross section shown in Fig. 7

is quite small.

Up to now we have discussed only the qT-space predictions in the perturbative region,

i.e. for qT � 2 � 3 GeV. Still, in order to compare theoretical predictions to experiment

one has to �nd a way of dealing with the non-perturbative region (qT ! 0), where Eq. (35)

is ill-de�ned. The form of ~Yr suggests that we make the following replacement in Eq. (35):

f 0
a=A

(xA; qT) f
0

b=B
(xB; qT) exp [T (qT; Q)] �!

f 0
a=A

(xA; qT�) f
0

b=B
(xB; qT�) exp [T (qT�; Q)] ~FNP (qT) : (40)

Here, qT� is the e�ective transverse momentum and ~FNP is the qT-space non-perturbative

part of the form factor. Since the above replacement should a�ect only the region of small

qT, we de�ne qT� as

q2
T�
= q2

T
+ q2

Tlim
exp

"
� q2

T

q2
Tlim

#
; (41)

which never goes below the limiting value qTlim, and also approaches qT as qT becomes

much larger than qTlim. For ~FNP we require that

~FNP (qT) ! 0 (for qT ! 0) ;

~FNP (qT) ! 1 (for qT ! Q) ;

d

dq2
T

~FNP (qT) ! const: (for qT ! 0) : (42)
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The �rst two properties ensure that the integral of ~Yr over q2T gives the result

Z
Q
2

0
dq2

T
~Yr(q

2
T
; Q2; y; �) =

1

�

X
a;b

0H
(0)

ab
(�)f 0

a=A
(xA; Q)f

0

b=B
(xB; Q) ; (43)

which is required to reproduce the exact O(�S) total cross section after integration over

qT, as explained in Ref. [13]. The third condition is motivated by the analytic b-space

results for d�=dq2
T
in the limit where qT ! 0 [5] (see Appendix A).

A simple choice for ~FNP which satis�es all of the above requirements is

~FNP (qT) = 1� exp [�~aq2
T
] : (44)

At qT = 0 this yields

d�

dq2
T

/ ~a
X
a;b

0H
(0)

ab
(�)

h
f 0
a=A

(xA; qTlim) f
0

b=B
(xB; qTlim) exp [T (qTlim; Q)]

i
;

d

dq2
T

� d�
dq2

T

�
/ �~a2

X
a;b

0H
(0)

ab
(�)

h
f 0
a=A

(xA; qTlim) f
0

b=B
(xB; qTlim) exp [T (qTlim; Q)]

i
: (45)

Therefore, ~a and qTlim control the intercept and the �rst derivative of d�=dq2
T
at qT = 0.

The e�ects of changing these non-perturbative parameters are illustrated in Figures 8 and

9, forW++W� production at Fermilab Tevatron. In Figure 8 we compare typical b-space

results for the d�=dq2
T
distribution, to the qT-space predictions with several di�erent values

of ~a (qTlim was �xed to 4:0 GeV). In Figure 9 we plot our d�=dqT results obtained with

~a �xed to 0:10 GeV�2, and for several di�erent choices of qTlim. These results show how

varying qTlim modi�es the width and shifts the peak of the d�=dqT distribution.

From Figures 8 and 9 it is also clear that ~a and qTlim a�ect only the low qT region,

while for qT � 10 GeV we again obtain the extended DDT result of Eq. (35). Because

of that, determination of these parameters from the experimental data should not be too

di�cult.
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4.3 Overall smearing

Introduction of ~a and qTlim allowed us to extend the validity of Eq. (35) beyond the

perturbative region in qT. However, this may not be enough for a good description of

experimental data, and one may need additional degrees of freedom for modelling the low

qT region.10 This can be achieved by choosing more complicated functional forms for qT�

and ~FNP than the ones we suggested in Eqs. (41, 44), or by imposing an overall smearing

on the theoretical transverse momentum distributions. Here we brie
y discuss the later

possibility.

Suppressing irrelevant variables, the smeared cross section is given in terms of

~Yi(q
2
T
) =

Z
d2kTf(jkT � qTj) ~Yi(k2T) ; (46)

where ~Yi stands for either resummed or �nite part in qT-space, and f is the smearing

function. For the sake of simplicity we take a gaussian,

f(kT) =
~g

�
exp(�~g k2

T
) ; (47)

with ~g being an additional non-perturbative parameter. The above choice is convenient

since the azimuthal integration can be done analytically. This leads to the �nal expression

for the smeared ~Yi,

~Yi(q
2
T
) = ~g

Z
dk2

T
exp

h
� ~g(q2

T
+ k2

T
)
i
I0(2~gqTkT) ~Yi(k

2
T
) : (48)

Note that both the resummed and the �nite part of the cross section can be smeared

together, and therefore the smearing procedure should not a�ect matching onto the pure

perturbative result at large qT. The e�ects of an overall smearing for low qT are illustrated

in Figure 10 for W+ +W� production at Tevatron.

10We remind the reader that some choices of the non-perturbative function in the b-space formalism

involve 4-6 di�erent parameters.
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5 Conclusions

In this paper we have outlined an approach to the calculation of the transverse momentum

distributions of W and Z bosons using an extension of the DDT formula which works

directly in qT-space. Our formalismagrees with b-space for all calculated logarithms except

the NNNL series. This is a pragmatic approach which uses the available theoretical in

an e�cient way. For qT above about 3 GeV the cross section is essentially determined by

perturbative QCD. In the region qT � 3 GeV the cross section is determined by a model,

the form of which is motivated by the analytic results from the b-space approach. Just

as in the b-space approach, the details of the model are to be �xed by comparison with

experiment. The numerical program incorporating our results describes all kinematic

regions.

An obvious shortcoming of this paper is the failure to include the results of the order

�2
S
calculations [17, 19, 20] (generalized to include the decay of the vector boson [21, 22])

in the �nite part of the cross section. In the qT-space formalism these should be relatively

straightforward to include. After inclusion of these e�ects we will have a full description

of vector boson production valid in all kinematic regions, with a minimum of model

dependence.
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A Analytic behaviour at q
T
= 0

The result of Parisi and Petronzio [5] for the intercept at qT = 0 can be obtained by saddle

point evaluation of Eq. (36),

F (b)(0) =
Q2

4

Z
db2 exp[S(b;Q)] : (49)
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In writing the above equation we have assumed that the saddle point value of b is small

so that b� = b and FNP (b) = 1. Introducing the variable x = ln b2 we have that

F (b)(0) =
Q2

4

Z
dx exp[�h(x)] ; (50)

where

h(x) = �[x+ S(exp(x=2); Q)] : (51)

The saddle point result for F (b)(0) is then given by

F (b)(0) =
Q2

4

s
2�

h00(xSP)
exp[�h(xSP)] ; (52)

where xSP = ln b2
SP
is de�ned by the condition

h0(xSP) = 0 : (53)

On the assumption that the structure functions are slowly varying functions of the scale,

the resummed part at qT = 0 becomes

Yr(0; Q
2; y; �) =

b2
SP

4�

s
2�

�S 00(bSP; Q)
X
a;b

0Wab(Q; bSP; �)f
0

a=A
(xA;

b0

bSP
)f 0

b=B
(xB;

b0

bSP
) ; (54)

where

S 00(b;Q) = d2S(b;Q)
d(ln b2)2

: (55)

By retaining only the leading term (A1) in the Sudakov form factor we can obtain

an approximate analytic solution. We assume that the running coupling satis�es the

equation (�0 = (33 � 2nf )=6)

�S(�) =
2�

�0

1

ln�2=�2
; (56)

and set C = 2CF =�0. The saddle point of the integral is then given by

1

bSP
=

�

b0

�Q
�

� C

C+1 : (57)
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Using Eqs. (54,57) we obtain the �nal result for the resummed part of the cross section

(L = lnQ2=�2),

Yr(0; Q
2; y; �) � b20

4��2

p
2�CL

(C + 1)

��2

Q2

�
�X
a;b

0H
(0)

ab
(�)f 0

a=A
(xA;

b0

bSP
)f 0

b=B
(xB;

b0

bSP
) ; (58)

with

� = C ln
C + 1

C
: (59)

The Yr has a �nite intercept at qT = 0 which shrinks with Q. For nf = 3 (4) we have that

� = 0:586 (0:602).
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Figure 1: Comparison of the b-space d�=dqT distribution for W+ + W� production atp
S = 1:8 TeV with O(�S) perturbative calculation. The resummation results were ob-

tained with pure gaussian (g = 3:0 GeV2; b lim = 0:5 GeV�1) form of FNP . We assumed

BR(W ! e�) = 0:111.

23



Figure 2: F (b)(qT) for the two di�erent choices of the non-perturbative function.
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Figure 3: Form factors F (b), F (qT) and F (p). The b-space results were obtained with an

e�ective gaussian form of FNP (g = 3:0 GeV2; b lim = 0:5 GeV�1).
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Figure 4: The qT-space form factor F (qT) calculated with B(2) and ~B(2).
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Figure 5: Comparison of various theoretical predictions for W+ +W� d�=dqT with CDF

data [23]. The b-space results were obtained with an e�ective gaussian form of FNP

(g = 3:0 GeV2; b lim = 0:5 GeV�1). We assumed BR(W ! e�) = 0:111.
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Figure 6: Comparison of various theoretical predictions for Z d�=dqT with CDF data

[24]. The b-space results were obtained with an e�ective gaussian form of FNP (g =

3:0 GeV2; b lim = 0:5 GeV�1). We assumed BR(Z ! e+e�) = 0:033.
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Figure 7: Comparison of the qT-space d�=dqT distribution for W+ +W� production atp
S = 1:8 TeV with O(�S) perturbative calculation. We assumed BR(W ! e�) = 0:111.
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Figure 8: Various theoretical predictions for d�=dq2
T
in W+ +W� production at

p
S =

1:8 TeV. The b-space results were obtained with an e�ective gaussian form of FNP (g =

3:0 GeV2; b lim = 0:5 GeV�1). The qT-space predictions correspond to qTlim = 4:0 GeV.
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Figure 9: Various theoretical predictions for d�=dqT in W+ +W� production at
p
S =

1:8 TeV. The b-space results were obtained with an e�ective gaussian form of FNP (g =

3:0 GeV2; b lim = 0:5 GeV�1). The qT-space predictions correspond to ~a = 0:10 GeV�2.

We assumed BR(W ! e�) = 0:111.
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Figure 10: E�ects of smearing in qT-space for W+ +W� production at
p
S = 1:8 TeV.

We used ~a = 0:10 GeV�2, qTlim = 4:0 GeV, and BR(W ! e�) = 0:111.
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